Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

David J. Bray, ${ }^{\text {a,b }}$ Li-Ling Liao, ${ }^{\text {b,c }}$ Leonard F. Lindoy, ${ }^{\text {b }}$ John C. McMurtrie ${ }^{b_{*}}$ and Gang Wei ${ }^{\text {a,b }}$

${ }^{\text {a }}$ CSIRO, Industrial Physics, Bradfield Rd, West Linfield, New South Wales 2070, Australia,
${ }^{\text {b }}$ Centre for Heavy Metals Research, School of Chemistry, University of Sydney, New South Wales 2006, Australia, and ${ }^{\text {c }}$ School of Physics and Chemistry, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China

Correspondence e-mail:
j.mcmurtrie@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.028$
$w R$ factor $=0.075$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[dichlorocopper(II)]- $\mu-1,3,5-$ tris(2-pyridyloxymethyl)benzene] methanol solvate]

In the title compound, $\left\{\left[\mathrm{CuCl}_{2} \text { (tpomb) }\right] \cdot \mathrm{CH}_{3} \mathrm{OH}\right\}_{n}$ [where tpomb $=1,3,5$-tris(2-pyridyloxymethyl)benzene, $\left.\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}\right]$, two pyridyloxymethyl pendant arms of the tpomb ligand bridge $\mathrm{Cu}^{\text {II }}$ centres via $\mathrm{Cu}-\mathrm{N}$ bonds to form one-dimensional coordination polymer chains.

Comment

We have been investigating the molecular and polymeric structures of metal complexes with tripodal ligands and, in particular, those that incorporate pyridyl donors. The structure reported here, (I), was obtained during those investigations.

(I)

In (I), two pyridyloxymethyl pendant arms of 1,3,5-tris(2pyridyloxymethyl)benzene (tpomb) bridge $\mathrm{Cu}^{\mathrm{II}}$ atoms via $\mathrm{Cu}-\mathrm{N}$ bonds, forming a one-dimensional coordination polymer chain. The remaining pyridyloxymethyl pendant arm does not coordinate to a metal centre but is instead involved in an offset face-to-face aryl-aryl interaction with a coordinated pyridyl ring in an adjacent chain.

The coordination sphere of each $\mathrm{Cu}^{\mathrm{II}}$ atom comprises two pyridyl donors (from two different ligands in the polymer chain), as well as two chloride ligands. The resulting Cu coordination stereochemistry is intermediate between tetrahedral and square planar (see Fig. 1 for a graphical illustration and Table 1 for pertinent bond lengths and angles). There are two weaker $\mathrm{Cu} \cdots \mathrm{O}$ contacts that, at 2.6445 (11) (Cu1…O1) and 2.8146 (11) $\AA\left[\mathrm{Cu} 1 \cdots \mathrm{O} 3^{\mathrm{i}}\right.$; symmetry code: (i) $\frac{1}{2}+x, y$, $\frac{3}{2}-z$], are longer than typical $\mathrm{Cu}-\mathrm{O}$ coordinate bonds. While possibly not true coordinate bonds, these Cu to O contacts are almost certainly significant in the observed configurational organization of the pyridyloxymethyl pendant arms around the $\mathrm{Cu}^{\mathrm{II}}$ atoms.

The conformation of the tpomb ligand is not only influenced by the coordination geometry of the pyridyloxymethyl groups

Received 26 May 2004
Accepted 3 June 2004
Online 12 June 2004
\qquad

Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the $\mathrm{Cu} 1 \cdots \mathrm{O} 1$ contact and the dashed line represents the $\mathrm{CH}_{3} \mathrm{OH}$ to Cl hydrogen bond. The insert shows the complete coordination sphere of the $\mathrm{Cu}^{\mathrm{II}}$ centre. [Symmetry code: (i) $\frac{1}{2}+x, y, \frac{3}{2}-z$.]
around the $\mathrm{Cu}^{\mathrm{II}}$ centres but also by an intrachain offset face-to-face aryl-aryl interaction between the central benzene ring and a pyridyl arm from an adjacent ligand, as illustrated in Fig. 2.
The methanol solvent molecule is involved in a hydrogen bond to one of the chloride ligands (geometrical details of which are provided in Table 2).

Experimental

For the preparation of 1,3,5-tris(2-pyridyloxymethyl)benzene (tpomb), a mixture of 1,3,5-tris(hydroxymethyl)benzene (0.75 g , $4.5 \mathrm{mmol})$, 2-bromopyridine $(2.21 \mathrm{~g}, 14 \mathrm{mmol})$ and potassium hydroxide ($2.5 \mathrm{~g}, 45 \mathrm{mmol}$) was refluxed in toluene (30 ml) for 48 h . The solvent was then removed under vacuum and the residue partitioned between chloroform (50 ml) and water (50 ml). The organic layer was separated, washed with saturated aqueous NaCl and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before removing the solvent under vacuum. The solid residue was then triturated with cold methanol to give tpomb as a pale-yellow powder $(0.5 \mathrm{~g}, 30 \%)$ (m.p. 339-340 K). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 5.41\left(s, \mathrm{CH}_{2}, 6 \mathrm{H}\right), 6.7-8-6.91$ (m, pyridine, 6 H), $7.51\left(s, \mathrm{C}_{6} \mathrm{H}_{3}, 3 \mathrm{H}\right), 7.54-7.63$ (m , pyridine, 3 H), 8.18 (d, pyridine, 3H). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 67.28\left(\mathrm{CH}_{2}\right)$, 111.36, 116.95, 126.91, 138.63, 146.85 (aromatic), 137.91, 163.58 (quarternary aromatic). MS (ES) $m / z=400.0(M+\mathrm{H})^{+}$. Found (\%): C 71.65, H 5.31, N $10.28 ; \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 0.25 \mathrm{CH}_{4} \mathrm{O}$ requires: $\mathrm{C} 71.47, \mathrm{H}$ 5.45, N 10.32 .
$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.060 \mathrm{~g}, 0.35 \mathrm{mmol})$ in ethanol $(6 \mathrm{ml})$ was added to a solution of tpomb $(0.15 \mathrm{~g}, 0.37 \mathrm{mmol})$ in ethanol $(12 \mathrm{ml})$ to give a finely divided blue precipitate with empirical formula $\left[\mathrm{Cu}(\right.$ tpomb $\left.) \mathrm{Cl}_{2}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{~g}, 50 \%)$. Found (\%): C 53.00, H 4.07, N 7.62; $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{CuCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} .0 .5 \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C} 53.10, \mathrm{H} 4.08, \mathrm{~N} 7.74$. Small pale-green crystals of the title compound were obtained by recrystallization of the above fine blue solid from a methanol solution.

Figure 2
The coordination polymer chains propagate parallel to the a axis (C grey, Cu green, Cl orange, N blue and O red; H atoms omitted). A section of one such chain is illustrated above. The conformation of the tpomb ligand is determined by the coordinate bonding of the pyridyloxymethyl pendant arms as well as by intrachain Offset Face-to-Face (OFF) interaction.

Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=565.92$
Orthorhombic, Pbca
$a=12.7397$ (8) \AA
$b=15.6191$ (10) \AA
$c=25.0173$ (15) A
$V=4978.0(5) \AA^{3}$
$Z=8$
$D_{x}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1000 CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.717, T_{\text {max }}=0.844$
46409 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 16661 reflections
$\theta=2.2-28.2^{\circ}$
$\mu=1.13 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, pale-green
$0.35 \times 0.34 \times 0.15 \mathrm{~mm}$

6076 independent reflections
5070 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.4^{\circ}$
$h=-16 \rightarrow 17$
$k=-20 \rightarrow 20$
$l=-33 \rightarrow 33$

metal-organic papers

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0401 P)^{2} \\
&+2.1134 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.075$
$S=1.03$
6076 reflections
320 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9782(12)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2782(4)$
$\mathrm{Cu} 1-\mathrm{N} 3^{\mathrm{i}}$	$1.9888(12)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.6445(11)$
$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.2352(4)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.8146(11)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3^{\mathrm{i}}$	$147.39(5)$	$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$130.62(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$96.48(4)$	$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$92.73(3)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 2$	$98.47(4)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$102.71(4)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$93.40(4)$	$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$51.95(4)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 1$	$97.78(4)$	$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$80.79(3)$
$\mathrm{Cl} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$131.983(17)$	$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$141.76(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$54.92(4)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$70.05(3)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$93.87(4)$		

Symmetry code: (i) $\frac{1}{2}+x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 m-\mathrm{H} 1 m \cdots \mathrm{Cl} 1$	$0.793(9)$	$2.463(13)$	$3.2161(16)$	$159(2)$

C-bound H atoms were included in idealized positions and refined using a riding-model approximation with methylene, methyl and aromatic bond lengths fixed at $0.99,0.98$ and $0.95 \AA$, respectively. $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent C atoms for methylene and aromatic H atoms, and at $1.5 U_{\text {eq }}$ of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with the following restraints: $\mathrm{O}-\mathrm{H}=$ 0.8 (1) $\AA, \mathrm{C} \cdots \mathrm{H}=1.95$ (2) \AA and $U_{\text {iso }}$ fixed at $1.5 U_{\text {eq }}$ of the parent O atom.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Version 1.0; Allen et al., 2004) and WinGX-32 (Farrugia, 1999).

We gratefully acknowledge the Australian Research Council for support.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giocavazzo, C., Guagliardi, A., Moliterni, A. G. C., Polidori, G. \& Spagna, S. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

